\(\int \frac {\sqrt {\cos (c+d x)} (A+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [1110]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 84 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {(3 A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \]

[Out]

(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-C)*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A+C)*sin(d*x+c)*cos(d*x+c
)^(1/2)/d/(a+a*cos(d*x+c))

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4199, 3121, 2827, 2720, 2719} \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=-\frac {(A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(3 A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

((3*A + C)*EllipticE[(c + d*x)/2, 2])/(a*d) - ((A - C)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A + C)*Sqrt[Cos[c
+ d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {C+A \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx \\ & = -\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int \frac {-\frac {1}{2} a (A-C)+\frac {1}{2} a (3 A+C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{a^2} \\ & = -\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac {(A-C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {(3 A+C) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = \frac {(3 A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.61 (sec) , antiderivative size = 1030, normalized size of antiderivative = 12.26 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {4 (A+C+2 A \cos (c)) \csc (c)}{d}-\frac {4 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}\right )}{(A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}+\frac {2 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))}-\frac {2 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))}-\frac {3 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}-\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2)*((-4*(A + C + 2*A*Cos[c])*Csc[c])/d - (4*Sec[c
/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d
*x])) + (2*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[
Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt
[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*
Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) - (2*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*H
ypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - Arc
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*
Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])
) - (3*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2,
 -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c
]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Ta
n[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt
[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C
 + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) - (C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*Sec[c/2]*(A + C*S
ec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]
*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan
[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (
2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[T
an[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x]))

Maple [A] (verified)

Time = 1.88 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.92

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A +2 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-A -C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(245\)

[In]

int((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A+2*C)*sin(1/2*d*x+1/2*c)
^4+(-A-C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.85 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=-\frac {2 \, {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt(2)*(I*A - I*C))*wei
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2)*(-I*A + I*C)*cos(d*x + c) + sqrt(2)*(-I*A +
I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*(3*I*A + I*C)*cos(d*x + c) + sqrt(2
)*(3*I*A + I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*
(-3*I*A - I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A - I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {A \sqrt {\cos {\left (c + d x \right )}}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate((A+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x) + 1), x) + Integral(C*sqrt(cos(c + d*x))*sec(c + d*x)**2/(sec(c +
 d*x) + 1), x))/a

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)), x)